Jeffrey, G. A., Parry, G. S. \& Mazzi, R. L. (1956). J. Chem. Phys. 25, 1024.
Johnson, C. K. (1965). ORTEP: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. Document ORNL-3794, Oak Ridge National Laboratory.
Krüss, G. \& Moraht, H. (1890). Annalen, 262, 38.
Larson, A. C. (1965). Acta Cryst. 18, 717.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Petersen, D. R., Rinn, H. W. \& Sutton, S. T. (1964). J. Phys. Chem. 68, 3057.

Pinnock, P. R., Taylor, C. A. \& Lipson, H. (1956). Acta Cryst. 9, 173.
Ross, M. (1964). Geological Survey Professional Paper No. 468, U.S. Department of the Interior.
Stam, C. H. (1962). Acta Cryst. 15, 317.
Töpsö̀, H. (1872). Sitzber. Akad. d. Wiss. Wien. 66, 5.
Tulinsky, A. \& Worthington, C. R. (1959). Acta Cryst. 12, 626.
Whittaker, E. T \& Robinson, G. (1944). The Calculus of Observations (4th ed.), p. 186 London: Blackie.

A Neutron Diffraction Determination of the Structure of Beryllium Sulphate Tetrahydrate, $\mathrm{BeSO}_{\mathbf{4}} \cdot \mathbf{4 \mathrm { H } _ { \mathbf { 2 } } \mathrm { O }}$

By S. K. Sikka and R. Chidambaram
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-74, India

(Received 8 February 1968)

Abstract

The crystal structure of $\mathrm{BeSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$ (space group $I 4 c 2 ; a=7.990 \AA, c=10.688 \AA ; Z=4$) has been directly determined from the intensities of 251 independent three-dimensional single-crystal neutron reflexions with $\sin \theta / \lambda \leq 0.7 \AA^{-1}$. The coordinates of the heavy atoms were obtained by the use of symmetry minimum and minimum functions and the hydrogen atoms were located from a 'weighted heavy atom' three-dimensional neutron scattering density Fourier synthesis. The parameters were further refined by the full-matiix least-squares method to an R value of 0.071 . The positional parameters of the heavy atoms are in excellent agreement with a recent independent X-ray study of the same compound. The S-O distance in the sulphate group is $1.464 \pm 0 \cdot 004 \AA$. Four sulphate oxygens form a tetrahedron around beryllium with a Be-O distarce of $1.618 \pm 0 \cdot 004 \AA$. The structure contains two hydrogen bonds from the water molecule to the sulphate oxygens of length $2 \cdot 684 \pm 0.005 \AA$ and $2 \cdot 617 \pm 0.005 \AA$, the $\mathrm{O}-\mathrm{H}$ distances being $0.971 \pm 0.006 \AA$ and $0.967 \pm 0.006 \AA$ (both uncorrected for thermal motion); the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle is $112 \cdot 7 \pm 0.8^{\circ}$.

Introduction

The crystal structure of beryllium sulphate tetrahydrate was first studied using X-rays by Schonefeld (1931), who described the structure (in the space group $I 4 / \mathrm{mcm}$) as consisting of planar SO_{4} and tetrahedral $\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ groups. Beevers \& Lipson (1932) reinvestigated the structure and showed that the true space group is $I \overline{4} c 2$; the postulated structure had tetrahedral SO_{4} and $\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ groups linked together by strong hydrogen bonds of length $2.56 \AA$ between the water and sulphate oxygens. That the hydrogen bonds were strong was also suggested from the study by Glemser \& Hartert (1955) of the correlation between the $\mathrm{O}-\mathrm{H}$ stretching frequency and the $\mathrm{O}-\mathrm{-} \mathrm{O}$ distance in hydrates. Our aim in taking up the neutron diffraction study of this crystal was to investigate the effect of strong hydrogen bonds (if these were present in the crystal) on the shape of the water molecule.

Recently, Dance \& Freeman (1969) have refined this structure using X-rays and this has also provided an opportunity to compare the structural parameters determined by the two methods.

Experimental

The neutron diffraction intensity data were collected at the CIRUS reactor in Trombay using the doublecrystal diffractometer 'DCD' (Chidambaram, Sequeira \& Sikka, 1964) on which a General Electric single crystal orienter had been mounted in the 'symmetrical' position. The crystal used for data collection was parallelepiped in shape, of weight 25 mg , and was mounted with the longest dimension (8.4 mm) corresponding to the [110] direction along the φ axis. Before mounting the crystal on the goniometer, it was coated with an adhesive (brand name 'Stickfast') and then repeatedly dipped in liquid nitrogen to reduce extinction affects. The intensities of all the 275 independent reflexions up to $\sin \theta / \lambda=\dot{0} \cdot 70 \AA^{-1}$ were then measured at a wavelength of $1.031 \AA$ using the $\theta-2 \theta$ scan technique. The orientation angles, $2 \theta, \chi, \varphi$, for each reflexion were set by hand. 24 reflexions had intensities less than their standard deviations computed from the counting statistics, and were treated as unobservables.

The integrated intensities were corrected for absorption ($\mu=1.78 \mathrm{~cm}^{-1}$, as measured experimentally). The
absorption factors, which were computed by the program ORABS* (Wehe, Busing \& Levy, 1962), varied from 0.773 to 0.810 . The intensities were brought to a near-absolute scale by comparison with the 440 reflexion from a NaCl single crystal and $\left|F_{0}\right|^{2}$ were then derived in the usual manner. The space group extinctions, $h k l$ when $h+k+l=2 n+1$ and $h 0 l$ when h or $l=2 n+1$, were consistent with the tetragonal space groups $I \overline{4} c 2$ and $I 4 / \mathrm{mcm}$. The cell constants used in our bond-length and angle calculations are: $a=7.990$ $\pm 0.001 \AA$ and $c=10.688 \pm 0.006 \AA$ (Dance \& Freeman, 1969); there are four formula units in the unit cell.

Solution of the structure

Because of the indirect manner in which Beevers \& Lipson (1932) had derived their structure and also since we had three-dimensional data, we considered it worth while to determine the structure directly from neutron intensities. The statistical $N(z)$ test of Howells, Phillips \& Rogers (1950) seemed to favour the noncentric space group $I \overline{4} c 2$, so it was chosen to be the correct space group. The structure was solved by the procedure described by Simpson, Dobrott \& Lipscomb (1965), in which the Patterson function $P(u v w)$ is interpreted through the use of symmetry minimum and minimum functions. \dagger The computation of the sym-

* This and all other calculations were carried out in the CDC 3600 computer at the Tata Institute of Fundamental Research, Bombay.
\dagger The structures of potassium hydrogen chloromaleate (Ellison \& Levy, 1965) and orthorhombic acetamide (Hamilton, 1965) have been solved by the same procedure.

Fig.1. Composite map of the symmetry minimum function $Q(x, y, z)$. The decimal fractions indicate the z coordinates of the levels from which the contoured portions were taken. The cross indicates the atom which was chosen for the calculation of the minimum function. Zero contours are omitted.
metry minimum function involved testing each grid point (x, y, z) in the asymmetric unit for possible atomic positions by taking the minimum of the Patterson values at the ends of the vectors between this point and points related to it by the space group symmetry. The form of the symmetry minimum function was the following:

$$
\begin{aligned}
Q(x, y, z) & =\min \left[0 \cdot 25 P\left(2 x, 0, \frac{1}{2}\right), 0 \cdot 25 P\left(0,2 y, \frac{1}{2}\right)\right. \\
& 0 \cdot 5 P(2 x, 2 y, 0), 0 \cdot 5 P(x-y, x+y, 2 z) \\
& 0 \cdot 5 P(x+y, x-y, 2 z), 0 \cdot 5 P\left(x-y, x-y, \frac{1}{2}+2 z\right) \\
& \left.0 \cdot 5 P\left(x+y, x+y, \frac{1}{2}+2 z\right)\right]
\end{aligned}
$$

The Patterson function was not sharpened. The resultant map for the asymmetric unit is shown in Fig. 1. This map contains maxima, corresponding to each of eight $\overline{4}$ centres $\left(000,00 \frac{1}{2}, \frac{1}{2} \frac{11}{2}, \frac{1}{2} \frac{1}{2} 0,0 \frac{1}{2} \frac{1}{4}, 0 \frac{1}{2} \frac{1}{4}, \frac{1}{2} 0 \frac{3}{4}, \frac{1}{2} 0 \frac{1}{4}\right)$ all of which are possible origins of the $I \overline{4} c 2$ space group and thus give rise to an eightfold ambiguity in the choice of origin. The peak marked X was then selected for the calculation of the 16 -fold Buerger minimum function:

$$
\begin{aligned}
& S(x, y, z)=\min \left[P\left(x-x_{0}, y-y_{0}, z-z_{0}\right)\right. \\
& \left.\quad P\left(x+x_{0}, y+y_{0}, z-z_{0}\right), \text { etc. }\right]
\end{aligned}
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ are the coordinates of the chosen atomic position and the minimum was taken of all the sixteen Patterson values at the ends of the vectors between (x, y, z) and sixteen equivalent positions ($x_{0}, y_{0}, z_{0} ;-x_{0},-y_{0}, z_{0} ;$ etc.). The function $S(x, y, z)$ (Fig.2) contained only four definite maxima in the asymmetric unit and these were assigned to $\mathrm{S}, \mathrm{Be}, \mathrm{O}(1)$ and $\mathrm{O}(2)$ from peak height and symmetry considerations. The hydrogen atoms did not show up in this map. At this stage, a Fourier synthesis of the nuclear scattering density calculated with phases based on the contributions of $\mathrm{S}, \mathrm{Be}, \mathrm{O}(1)$ and $\mathrm{O}(2)$, omitting terms for which $\left|F_{o}\right| \geq 2\left|F_{c}\right|$ failed to show the hydrogen peaks. However a 'weighted' nuclear scattering density synthesis clearly revealed sizable negative peaks corresponding to the hydrogen positions. In this synthesis the coefficients used were $\omega\left|F_{o}\right|$ where $\omega=I_{1}(x) / I_{0}(x)$ (Sim, 1961); $I_{0}(x)$ and $I_{1}(x)$ are respectively the zeroorder and first-order Bessel functions of the first kind and $x=2\left|F_{o}\right|\left|F_{c}\right| / \Sigma b_{\mathrm{H}}^{2}\left(\Sigma b_{\mathrm{H}}^{2}\right.$ is the sum of the squares of the scattering amplitudes of the hydrogen atoms in the unit cell). The R value ($R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$) at this stage was $0 \cdot 283$.

Refinement

Isotropic refinement using the program ORFLS (Busing, Martin \& Levy, 1962) based on $|F|^{2}$, starting from the parameters obtained in the last section and weights based on counting statistics, immediately indicated the presence of severe extinction. Corrections for extinction were made by the method described elsewhere (Sikka, Momin, Rajagopal \& Chidambaram,
1967), in which it can be approximated by the expression:*

$$
E \simeq \frac{\left|F_{0}\right|^{2}}{\left|F_{c}\right|^{2}} \simeq 1-G \cdot \frac{\left|F_{c}\right|^{2}}{\sin 2 \theta} \cdot \frac{1}{V} \int_{V} T e^{-\mu T} d V .
$$

Here G is a constant, $A(\mu)$ the absorption factor and T the sum of the path lengths of the incident and reflected beams inside the crystal for the element of volume $d V . F_{c}$ is the calculated structure factor following an anisotropic refinement in which the reflexions suffering from extinction have been omitted.

For applying the correction to $\mathrm{BeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ data, an anisotropic refinement in which 41 parameters one scale factor, 12 positional and 28 temperature parameters - were varied was carried out omitting reflexions with $\left|F_{o}\right|^{2} / \sin 2 \theta \geq 20$. This converged at an R value of $0 \cdot 130$. The constant G was estimated by a least-squares fit of the values for which $\left|F_{o}\right|^{2} /\left|F_{c}\right|^{2} \geq 0 \cdot 70$. The corrections beyond this range were read directly from the plot by extending it visually. After application of this correction the R value became $0 \cdot 105$. Two further cycles of refinement lowered the R value to 0.095 . An error analysis at this stage indicated that the errors based on counting statistics were underestimated. The new weighting scheme was derived from the expression:

$$
\omega^{- \pm}=\langle | \Delta\left(F^{2}\right)| \rangle_{a v} \simeq 1.3+0.022 \frac{\left|F_{o}\right|^{2}}{\sin 2 \theta} .
$$

After two more cycles of refinement, the R value was 0.073 . The extinction correction \dagger was repeated at this stage with new values of F_{c} 's and with a better value

* It should be pointed out here that an extinction correction based on the more approximate expression

$$
E \simeq 1-G^{\prime} \frac{\left|F_{c}\right|^{2}}{\sin 2 \theta}
$$

leads to essentially the same positional and thermal parameters and gives nearly the same R value.
\dagger To give an idea of the extinction correction, it may be mentioned that the most severely affected reflexion was 112 for which $E \simeq\left|F_{o}\right|^{2} /\left|F_{c}\right|^{2}=0.56$. The number of reflexions in various ranges of E were: 3 in 0.56 to $0.59,5$ in 0.60 to 0.69 , 9 in 0.70 to $0.79,17$ in 0.80 to 0.89 and 217 in 0.9 and above.
of G. The various discrepancy factors defined by $R_{x}=\left[\left.\Sigma| | F_{o}\right|^{x}-\left.\left|F_{c}\right|^{x}|/ \Sigma| F_{o}\right|^{x}\right]$ computed from the final refinement are as follows:

Set	1	2
$x=1$	0.071	0.066
$x=2$	0.082	0.080
Number of data	251	237

where set 1 includes all data and set 2 data which have $\left|F_{0}\right|^{2}>\omega^{- \pm}$.
The final positional and temperature parameters are given in Table 1. The observed and calculated squared structure factors are compared in Table 2. Some of the bond distances and bond angles calculated by the program ORFFE (Busing, Martin \& Levy, 1964) are presented in Table 3. These have not been corrected for thermal motion because of the somewhat unreasonable temperature factors of $\mathrm{H}(2)$ and S . A composite Fourier synthesis of the structure calculated using the program FORDAP (Zalkin, 1962) is presented in Fig. 3.

Fig.2. Composite map of the minimum function $S(x, y, z)$. The decimal fractions indicate the z coordinate of the levels from which the contoured portions were taken. The contours are at equal arbitrary intervals. Zero contours are omitted.

Table 1. Positional and thermal parameters
The expression for the temperature factor is

$$
\exp \left[-2 \pi^{2}\left(h^{2} a^{*} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l c^{*} a^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right] .
$$

The least-squares standard errors are given in parentheses.

	Fractional coordinate $\left(\times 10^{5}\right)$		
	x	y	z
S	0	0	0
Be	0	50000	25000
$\mathrm{O}(1)$	$12563(50)$	$8408(49)$	$7733(49)$
$\mathrm{O}(2)$	$13758(57)$	$39560(47)$	$17093(4)$
$\mathrm{H}(1)$	$22729(105)$	$45696(96)$	$13106(82)$
$\mathrm{H}(2)$	$12290(82)$	$28418(57)$	$13628(65)$

Thermal parameter $\left(\AA^{2} \times 10^{4}\right)$					
U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$28(25)$	U_{11}	$421(62)$	0	0	0
$136(12)$	U_{11}	$151(17)$	0	0	0
$313(20)$	$163(16)$	$452(19)$	$48(15)$	$-221(18)$	$-81(16)$
$358(21)$	$148(18)$	$446(12)$	$-73(16)$	$216(18)$	$-114(16)$
$416(43)$	$319(32)$	$511(40)$	$-26(27)$	$240(39)$	$4(30)$
$327(30)$	$108(30)$	$423(33)$	$-21(18)$	$8(27)$	$-70(24)$

Discussion

Comparison with X-ray structure

It appears that the X-ray structure determined by Beevers \& Lipson (1932) is basically correct. The errors in the coordinates are, however, significant, the maximum being $0.13 \AA$ in the y coordinate of $\mathrm{O}(1)$. As a consequence, the hydrogen bonds are not as strong as indicated by Beevers \& Lipson's structure - 2.62 and $2.68 \AA$ instead of $2 \cdot 56 \AA$. The positional parameters of $\mathrm{O}(1)$ and $\mathrm{O}(2)$, as determined from our neutron study, have been compared in Table 4 with the values found in the X-ray study of Dance \& Freeman (1969); the differences in the two sets of bond lengths and bond angles (not involving hydrogen atoms) are given in Tables 5 and 6. It is noticed that no coordinate, bond length or bond angle differs by more than 1.86 times the 'pooled' error. The agreement between the two structures should be considered excellent.* The differences with respect to the positional parameters of the hydrogen atoms, viz. 0.07 and $0.17 \AA$, are not bad considering the well known difficulty in locating hydrogen atoms by X-ray methods. The thermal parameters of $O(1)$ and $O(2)$ in the two structures are in reasonable agreement. In view of the scattering amplitudes of the various atoms in the structure for X-rays and neutrons, our values for the thermal parameters of Be

* It may be noted that a deviation of up to $\pm 1.96 \sigma$ lies inside a 95% confidence interval, assuming a normal distribution of errors (Hamilton, 1964).

Fig.3. Composite map of the final three-dimensional nuclear scattering density of $\mathrm{BeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The positive and the negative contours (shown by broken lines) are at intervals of $0.46 \mathrm{~cm} \times 10^{-12} \AA^{-3}$. The zero contours have been omitted. The decimal fractions indicate the z coordinates of the levels from which the contoured portions were taken.
and those of Dance \& Freeman for S are perhaps relatively more reliable.

Table 2. Observed and calculated squared structure factors for $\mathrm{BeSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$
The nuclear scattering lengths used are (in units of $10^{-12} \mathrm{~cm}$): oxygen 0.581 , beryllium 0.774 ; sulphur 0.284 ; and hydrogen -0.378 .

The five columns in each set contain respectively the Miller indices $h, k, l, 100\left|F_{o}\right|^{2}$ and $100\left|F_{c}\right|^{2}$.

Table 3. Bond distances (\AA) and bond angles $\left(^{\circ}\right)$ uncorrected for thermal motion
The standard deviations are given in parentheses*

SO_{4} tetrahedron			
$\mathrm{S}-(1) \mathrm{O}(1)$	$1.464(4)$	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$111.2(2)$
$\mathrm{O}(1)-\mathrm{O}\left(1^{1}\right) \dagger$	$2.416(8)$	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(2^{\mathrm{v}}\right)$	$108.6(2)$
$\mathrm{O}(1)-\mathrm{O}\left(1^{\mathrm{v}}\right)$	$2.377(7)$		
$\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ tetrahedron			
$\mathrm{Be}-\mathrm{O}(2)$	$1.618(4)$	$\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}\left(2^{\mathrm{ii}}\right)$	$117.0(2)$
$\mathrm{O}(2)-\mathrm{O}\left(2^{\mathrm{vi}}\right)$	$2.582(8)$	$\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}\left(2^{\mathrm{vi}}\right)$	$105.8(2)$
$\mathrm{O}(2)-\mathrm{O}\left(2^{\mathrm{iij})}\right.$	$2.760(9)$		

Water molecule and the hydrogen bonds

$\mathrm{O}(2)-\mathrm{H}(1)$	$0.967(6)$	$\mathrm{H}(1)-\mathrm{O}(2)-\mathrm{H}(2)$	$112.7(8)$
$\mathrm{O}(2)-\mathrm{H}(2)$	$0.971(8)$	$\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	$114.6(2)$
$\mathrm{O}(2)-\mathrm{O}(1)$	$2.684(5)$	$\mathrm{O}(2)-\mathrm{H}(1)-\mathrm{O}\left(1^{\text {iii }}\right)$	$171.7(8)$
$\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	$2.617(5)$	$\mathrm{O}(2)-\mathrm{H}(2)-\mathrm{O}(1)$	$172.3(6)$
$\mathrm{H}(1)-\mathrm{O}\left(1^{\text {iii }}\right)$	$1.656(8)$	$\mathrm{Be}-\mathrm{O}(2)-\mathrm{H}(1)$	$118.2(5)$
$\mathrm{H}(2)-\mathrm{O}(1)$	$1.719(6)$	$\mathrm{Be}-\mathrm{O}(2)-\mathrm{H}(2)$	$126.2(5)$
$\mathrm{H}(1)-\mathrm{H}(2)$	$1.614(10)$	$\mathrm{Be}-\mathrm{O}(2)-\mathrm{O}(1)$	$130.4(3)$
		$\mathrm{Be}-\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	$113.2(2)$

* The errors given here have been calculated from the variance-covariance matrix of the final least-squares refinement and do not include the cell-constant errors.
\dagger Code for symmetry-related atoms:

Superscript	Atom at		Superscript				Atom at		
$\overline{\mathrm{i}}$	x	y	z	v					
ii	\bar{x}	\bar{y}	z	y					
\bar{y}	\bar{x}	\bar{z}							
iii	$\frac{1}{2}-x$	$\frac{1}{2}+y$	z	z					

Table 4. Differences in coordinates obtained from neutron and X-ray studies

	\mid Difference \mid			
Atom	Parameter	(Δ)	(σ)	Δ / σ
$\mathrm{O}(1)$	x	0.0003	0	0.0007
	y	0.0001	0.0007	0.43
	z	0.0004	0.0006	0.00
$\mathrm{O}(2)$	x	0.0012	0.0008	0.17
	y	0.0009	0.0007	1.71
	z	0.0006	1.50	
	* The 'pooled' error is $\sigma=\left(\sigma^{2} \text { neutron }+\sigma^{2} \mathrm{X} \text {-ray }\right)^{1 / 2}$			

Table 5. Differences in bond distances obtained from neutron and X-ray studies

\quad Bond	Difference (4)	Pooled' error (σ)	Δ / σ
$\mathrm{S}-\mathrm{O}(1)$	$0.001 \AA$	$0.006 \AA$	0.17
$\mathrm{O}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	0.003	0.010	0.30
$\mathrm{O}(1)-\mathrm{O}\left(1^{\text {iv }}\right)$	0.002	0.010	0.20
$\mathrm{Be}-\mathrm{O}(2)$	0.008	0.006	1.33
$\mathrm{O}(2)-\mathrm{O}\left(2^{\text {vi }}\right)$	0.016	0.010	1.60
$\mathrm{O}(2)-\mathrm{O}\left(2^{\text {ii }}\right)$	0.007	0.011	0.64
$\mathrm{O}(2)-\mathrm{O}(1)$	0.013	0.007	1.86
$\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	0.007	0.007	1.00

Water molecule and hydrogen bonding

The environment of the oxygen atom of the water molecule is illustrated in Fig. 4. The sum of the three angles $\mathrm{Be}-\mathrm{O}(2)-\mathrm{H}(1), \mathrm{Be}-\mathrm{O}(2)-\mathrm{H}(2)$ and $\mathrm{H}(2)-\mathrm{O}(2)-$ $\mathrm{H}(1)$ is 357°. Thus, the lone-pair coordination of the water molecule in the structure is almost planar trigonal

Table 6. Differences in bond angles obtained from neutron and X-ray studies

| Angle | \|Difference|
 (4) | 'Pooled’ error
 (σ) | Δ / σ |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}(1)-\mathrm{S}-\mathrm{O}-\mathrm{O}\left({ }^{\text {i }}\right.$) | $0 \cdot 1{ }^{\circ}$ | $0 \cdot 3{ }^{\circ}$ | 0.33 |
| $\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(1^{\text {iv }}\right.$) | $0 \cdot 0$ | $0 \cdot 3$ | 0.00 |
| $\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}\left(2^{\text {ij }}\right.$) | $0 \cdot 5$ | $0 \cdot 3$ | 1.67 |
| $\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}\left(2^{\text {vi}}\right)$ | $0 \cdot 2$ | 0.3 | 0.67 |
| $\mathrm{Be}-\mathrm{O}(2)-\mathrm{O}(1)$ | $0 \cdot 3$ | $0 \cdot 4$ | 0.75 |
| $\mathrm{Be}-\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$ | 0.5 | $0 \cdot 3$ | 1.67 |
| $\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$ | $0 \cdot 3$ | $0 \cdot 3$ | 1.00 |

and is of type D in the classification of Chidambaram, Sequeira \& Sikka (1964). The two O-H orbitals of each water oxygen are utilized to form hydrogen bonds: $\mathrm{O}(2)-\mathrm{H}(1)--\mathrm{O}\left(1^{\mathrm{iii}}\right)$ and $\mathrm{O}(2)-\mathrm{H}(2)--\mathrm{O}(1)$ where $\mathrm{O}(1)$ and $\mathrm{O}\left(1^{\text {iii }}\right)$ belong to two different SO_{4} tetrahedra. Each sulphate oxygen atom acts as the negative end of two hydrogen bonds from two different water mol-

Fig.4. The environment of the water oxygen in the structure of $\mathrm{BeSO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$.
ecules. The lengths of the hydrogen bonds are 2.617 and $2.684 \AA$. The former is one of the shortest distances found in hydrates. The $\mathrm{O}-\mathrm{H}$ distances, 0.971 and $0.967 \AA$ (both uncorrected for thermal motion) are close to the $\mathrm{O}-\mathrm{H}$ distance in water vapour.

The angles $\mathrm{H}(1)-\mathrm{O}(2)--\mathrm{O}\left(1^{\text {iii }}\right)$ and $\mathrm{H}(2)-\mathrm{O}(2)--$ $\mathrm{O}(1)$ are 5.3° and 4.9° and the dihedral angle between

Table 7. The length and orientation of the interproton vectors of the water molecules

Proton magnetic resonance \dagger
Parameter* Neutron diffraction
(Pietrzak, 1965)

r_{\ddagger}^{*}	$1 \cdot 614 \pm 0 \cdot 010 \AA$
α	$58 \cdot 9 \pm 0 \cdot 4^{\circ}$
β	$31 \cdot 2 \pm 0 \cdot 4$
γ	$92 \cdot 0 \pm 0 \cdot 4$

$1.63 \pm 0.01 \AA$ 1.63
57°

33

* r is the length of the inter-proton vector and α, β, γ are the angles which this vector makes with the crystallographic axes, a, b, c respectively. By symmetry there are four nonparallel vectors at $\alpha, \beta, \gamma ; \alpha, \beta, 180-\gamma ; \beta, 180-\alpha, \gamma ;$ and β, $180-\alpha, 180-\gamma$.
\dagger The values of the angles given by Pietrzak are $102^{\circ}, 12^{\circ}$, 90°. The values in the above table have been recalculated assuming that his values are with respect to a pseudo-cell of dimensions, $a^{\prime}=a V / 2$ and $c^{\prime}=c / 2$ referred to by him. This pseudo-cell is rotated by 45° about the c axis from the normal unit cell.
\pm The neutron diffraction value has not been corrected for thermal motion while the proton magnetic resonance value has been corrected for thermal motion by the method given by Pedersen (1964).
the $\mathrm{H}(1)-\mathrm{O}(2)-\mathrm{H}(2)$ and $\mathrm{O}(1)-\mathrm{O}(2)--\mathrm{O}\left(1^{\text {iii }}\right)$ planes is 4.2°. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of 112.7° is significantly larger than the vapour value of 104.5°; it has been noted earlier that the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angles for the type D coordinated water molecule are generally high (Chidambaram, Sequeira \& Sikka, 1964; Baur, 1965; Pietrzak, 1966). This effect is probably more than usually pronounced in $\mathrm{BeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ because of the short $\mathrm{Be}-\mathrm{O}(2)$ contact of $1.618 \AA$.

The lengths and orientations of interproton vectors as obtained from the proton magnetic resonance technique (Pietrzak, 1965) and from this study are compared in Table 7. The agreement between the two results is satisfactory.

The authors are grateful to Shri S.N. Momin and Shri H.Rajagopal for experimental assistance and to Dr H.C. Freeman for communicating his results prior to publication.

References

Baur, W. H. (1965). Amer. Cryst. Ass. Meeting, Suffern, N.Y.

Beevers, C. A. \& Lipson, H. (1932). Z. Kristallogr. 82, 297.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least Squares Program. Oak Ridge National Laboratory Report ORNL-TM-305. The CDC 3600 version incorporates modifications by W.C. Hamilton, J. A.Ibers, C. K. Johnson \& S. Srikanta.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory Report ORNL-TM-306. The CDC 3600 version incorporates modifications by C. K. Johnson \& S. Srikanta.
Chidambaram, R., Sequeira, A. \& Sikka, S. K. (1964). J. Chem. Phys. 41, 3616.

Dance, I. G. \& Freeman, H. C. (1969). Acta Cryst. B25, 304.

Ellison, R. D. \& Levy, H. A. (1965). Acta Cryst. 19, 260.
Glemser, O. \& Hartert, E. (1955). Naturwiss. 42, 534.
Hamilton, W. C. (1964). Statistics in Physics Science. New York: Ronald Press.
Hamilton, W. C. (1965). Acta Cryst. 18, 866.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 6, 731.
Pedersen, B. (1964). J. Chem. Phys. 41, 122.
Pietrzak, J. (1965). Bull. Acad. Polon. Sci. 13, 379.
Pietrzak, J. (1966). Bull. Acad. Polon. Sci. 14, 289.
Schonefeld, P. (1931). Z. Kristallogr. 78, 16.
Sikka, S. K., Momin, S. N., Rajagopal, H. \& Chidambaram, R. (1967). J. Chem. Phys. 48, 1883.
Sim, G. A. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p.234. Oxford: Pergamon.
Simpson, P. G., Dobrott, R. D. \& Lipscomb, W. N. (1965). Acta Cryst. 18, 169.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. Oak Ridge National Laboratory Report ORNL-TM-229. The CDC 3600 version is due to S.Srikanta.
Zalkin, A. (1962). Private communication.

